
 Bilkent University

Senior Design Project

Consigliere

Project Low Level Design Report

Selin Erdem, İrem Yüksel, Orhun Çağlayan, Furkan Küçükbay​, ​Umut M​ü​cahit Köksaldı

Supervisor: Assoc. Prof. Dr. Mehmet Koyutürk
Jury Members: Prof. Dr. Uğur Güdükbay

 Prof. Dr. Cevdet Aykanat

Project Low Level Design Report

Feb 12, 2018

This report is submitted to the Department of Computer Engineering of Bilkent University in
partial fulfillment of the requirements of the Senior Design Project course CS492.

Table of Contents
1. Introduction……………………………………………………………………………3

1.1. Design Trade
Offs…………………………………………………………………………….4

1.1.1. Functionality vs. Usability…………………………………………….4
1.1.2. Security vs. Cost……………………………………………………….4
1.1.3. Space vs.

Time.…………………………………….…………………..4
1.2. Engineering

Standarts……………………………………………………………………….4
1.3. Interface Documentation Guidelines………..………………………………....5

2. Packages……………………………………………………………………………….5
2.1. Client…………………………………………………………………………..5

2.1.1. View Package……………………………………….…………………5
2.1.2. Controller Package…………………………………………………….6

2.2. Server………………………………………………………………………….7
2.2.1. Logic Package………………………………………………………....7
2.2.2. Data Package…………………………………………………………..8

3. Class Interfaces…………………………………………………...……………………9
3.1. Client…………………………………………………………………..………9

3.1.1. Views……………………………………………..……………………9
3.1.2. Controllers………………………………………………....…………10

3.2. Server………………………………………………………………....………12
3.2.1. Logic…………………………………………………………………12
3.2.2. Data…………………………………………………..………………13

4. References………………………………………………………………....…………16

1. Introduction

In the last few years, people’s daily lives have changed in many different ways. Simple things

became more complicated and we started to take more responsibilities and with more

responsibilities, came higher expectations. Consequently, concepts such as making plans,

using our time efficiently have gained more importance than ever before. Yet, it is a known

fact that nowadays people struggle when it comes to planning a day and running errands.

With the current technologies, it is possible to make a plan by entering the details such as

time and place, and having reminder alerts for these tasks, but these applications do not help

the user in terms of time efficiency and organization of their tasks.

Consigliere will be an iOS application that will work as a daily organizer and task manager.

With Consigliere, we aim to help people use their time more efficiently and regain the time

wasted on traffic. The user will simply need to enter whatever errands they have to run for

that day and the application will provide an optimal plan for the user to complete these

errands. This plan is designed by taking into account the roads the user will have to take to

get to the locations of their tasks, and the traffic situation in the road. In addition, the

application will estimate how much time the user will spend on an errand by analyzing the

busyness of the location and the nature of the user’s task. The application will also

periodically check the traffic status of relevant roads and the crowd level of the locations in

order to update the daily plan dynamically and send the user push notifications informing

them of the opportunities to run their errands in a timely manner.

In this report, we aim to provide an overview of the low-level architecture and design of our

system. First of all, the design trade-offs and the engineering standards are described. Also

the documentation guidelines are listed. Afterwards, the packages in our system and their

functionalities are described along with detailed class diagram views. Furthermore, interfaces

of all classes in all packages are included. With descriptions the functionalities of each

software component is clarified.

1.1 Design Trade Offs
1.1.1 Functionality vs. Usability

The main design goal of our system is providing the user with the maximum possible

functionality with an easy-to-use interface as in most of the promising mobile apps

today. Among the functionalities provided in Consigliere are authorization, task

managing, optimization of daily plans, route planning according to several crucial

constraints such as traffic intensity. These functionalities make Consigliere a mobile

app that can be used on a daily basis and that can be employed by the user several

times even in one single day. Therefore, user-friendliness is given the utmost

importance to boost the fun the users are having while they are using Consigliere.

1.1.2 Security vs. Cost
Consigliere is an app that the user should, first, log in with their credentials. It is a

platform where they are writing down their daily errands and also note personal

reminders. In a way, Consigliere is the right hand of the user and as for all reliable

servant, it should keep personal data for itself. In this regard, highly acknowledged

Google Firebase is being employed for data needs.

1.1.3 Space vs. Time

As being an errand planner and daily plan optimizer, Consigliere requires a lot of

space to both store the account details and the errands and the activity plans of the

users. Real-time traffic data must also be handled for the app to optimize the daily

plans. All these data needs however dictates requests from the app to the database and

calls to the maps api. In the algorithmic level, slow processing time is going to be

handled.

1.2 Engineering Standarts

In the reports, UML design principles are employed in diagrams, scenarios, use cases

and class interfaces. Through all these, the system decomposition and the underlying

structure of the system is described. The references in the reports follow the IEEE

citation guidelines and thus are integrated into standards of the community.

1.3 Interface Documentation Guidelines
In the implementation level, we follow the conventional ClassName format for

naming our classes and functionName() format for naming the methods. A

well-documented comments for classes and the methods are also present above the

function and class declaration lines.

2. Packages
2.1 Client
2.1.1 View Package

View package handles all user interface related operations.

ActivityItem: ​This class renders an activity list item for Activity.

ActivityMap: This class renders an interactive map for the current activity plan by drawing a
path on the map. As the user scrolls through ActivityListView, the parent controller passes
this ActivityMap a new Activity and this map transitions to show the path between two
activity locations.

ActivityListView: ​This class renders a scrollable list for the plan of the current day. It also
handles animations involving the list items and sends scroll events to the parent controller.

2.1.2 Controller Package

The controller package manages the interaction between user input, application level data
model and server-side database.

MainViewController:​ This class is responsible for adjusting the components that are
displayed on the screen according to the application level state.

AuthController: ​This class is responsible for the sign-up, sign-in and sign-out processes. If
an account is to be created, it initializes the local user model in the system and stores the user
data in the server. If the user logs in, then it retrieves the user data from the database and
initializes the application level user model.

ActivityListController:​ This class is responsible for fetching and updating the current list of
activities.

ActivityController: ​This class is responsible for the activity creation, update and delete
procedures.

UserController: ​This class is responsible for setting the user preferences such as permanent
addresses and on-going schedules.

PathController: ​This class is responsible for the calculation and the continuous update of the
current optimized route for the given activities as well as updating the map display.

2.2 Server
2.2.1 Logic Package

Auth:​ This class is composed of authReducer and props that authReducer modify.

UserManager: ​This class is composed of userReducer and user prop, which handles
modifications in user object (user profile).

ActivityListManager:​ This class is composed of userReducer and props that
activityListReducer modify. This class help management of activities of user.

ActivityManager:​ This class is composed of userReducer and activity prop, which handles
modifications in single activity.

PathManager: ​This class is composed of pathReducer and path prop, which manages path
state.

2.2.2 Data Package

Schedule:​ This class represents the schedule that it created for the user which a list of
activities.

DayofYear:​ This class represents a specific day of year. It holds the schedule and the date of
a specific day.

Activity:​ This is an interface for Errand_Activity and Recurring_activity classes

Errand_Activity:​ This class represents the errands that user has to run in an irregular basis.
It has duration attribute that helps the program to manage the schedule timely.

Recurring_Activity:​ This class represents the recurring activities of the user. More
specifically, it represents the activities that a user do on a regular basis. It has days attribute
that refers to the days that the activity recurs.

Day:​ This class represents the days of a week.

Preferences: ​This class represents the preferences of a user such as the locations that s/he
prefer to go.

TransportationType: ​This class represents the possible transportation methods for an
activity such as private car, walking and public transportation.

Address: ​This class represents the address information of an activity. The attributes
corresponds to components of formal addresses in Turkey.

PersonalAddress:​ This class inherits Address class and represents the personal addresses of
the user namely, home and work addresses.

User: ​This class represents a user of the application. A user object has identifying
information such as name, e-mail address etc.

3. Class Interfaces
3.1 Client
3.1.1 Views
● Class ActivityItem: ​This class renders an activity list item for Activity.

Properties:
private Activity

● Class ActivityMap: ​This class renders an interactive map for the current activity plan
by drawing a path on the map. As the user scrolls through ActivityListView, the
parent controller passes this ActivityMap a new Activity and this map transitions to
show the path between two activity locations.
Properties:
private ArrayList <Activity>
Methods:
public​ ​setActivityList(ArrayList <Activity>): Sets the current Activity list to the given
Activity list.

● Class ActivityListView: ​This class renders a scrollable list for the plan of the current

day. It also handles animations involving the list items and sends scroll events to the
parent controller.
Properties:
private List <Activity>
Methods:
public​ ​setBlocks(List <Activity>): Sets the current Activity list to the given Activity
list.

public addOnScrollListener(OnScrollListener listener): Adds a ScrollListener to the
Activity List.
public addOnItemClickListener(OnItemClickListener listener): Adds a
OnItemClickListener to each Activity on the Activity List.

3.1.2 Controllers
● Class MainViewController: This class manages which component will be

rendered on the screen depending on where the user is currently browsing in the
application.
Properties:
private Component activeView
Methods:
public LoginForm(): Switches the current view to the login form, adds any previous
active views to the React Native view stack
public ActivityList(): Switches the current view to the login form, adds any previous
active views to the React Native view stack
public ActivityDetails(): Switches the current view to the login form, adds any
previous active views to the React Native view stack
public MapView(): Switches the current view to the login form, adds any previous
active views to the React Native view stack
public UserPrefList(): Switches the current view to the login form, adds any previous
active views to the React Native view stack

● Class AuthController: ​This class manages the authentication process for the users.

Properties:
private User currentSession
Methods:
public emailChanged(String): Is executed whenever a new character has been typed
into the e-mail section on the login form, processes the newly entered string and calls
AuthReducer to store the e-mail in application state
public passwordChanged(): Is executed whenever a new character has been typed into
the password section on the login form, processes the newly entered string and calls
AuthReducer to store the e-mail in application state
public userLogin():Tries to log the user in with the current credentials stored in auth
state. Can call onLoginFail if there is no account associated with the given
credentials. If the operation succeeds, retrieves the user data from the server and calls
AuthReducer to store it in application state.
public onLoginFail(): Tries to create an account with the given credentials, should
that also fail, calls AuthReducer to set the error flag to 1.

● Class UserController:​ This class manages the maintenance and adjustment of the
user's preferences such as their permanent schedule.
Properties:
private Date[] schedule
Methods:
public setDate(Date): Executed whenever the user fills out a previously empty time
slot in their current schedule, the newly created date is added to the schedule array
kept both in this class and in application level user preference state.
public deleteDate(Date): Executed when the user clears out a previously filled slot in
their schedule, finds and removes the given date object from the schedule object in
user preference state.

● Class PathController:​ This class is responsible for the calculation and update of the
current most optimized path that goes through all of the user's uncompleted activities.
Properties:
private Path[] currentPath
private Activity[] currentActivities
private float interval
Methods:
public calculatePath(): Executed upon user request, gathers location based data and
calculates the most optimal path for the currently listed Activities
public updatePath(): Executed at time intervals specified in the class
properties.Checks the current activity locations and updates location data stored in the
application state through the PathReducer. Then recalculates the most optimal path
private pushActivities(Activity[]): Used by the updatePath and calculatePath methods
to set the current Activity list on an application wide object.

● Class ActivityListController: This class is responsible for the addition and
deletion of activities into the current list and its synchronization with the server.
Properties:
private Activity[] currentActivities
Methods:
public activityCreate(Activity): Called when a new activity is created, adds the newly
created activity to the currentActivities array as well as storing it in the application
level state using ActivityListReducer.
public activityDelete(Activity):Called when an activity is deleted, removes the deleted
activity from the currentActivities array as well as remving it from the application
level state using ActivityListReducer.
private fetchActivities(): Requests the user's stored activities from the online database.
private pushActivities(): Called whenever a new activity is created or deleted, updates
the activity snapshot stored in the database.

● Class ActivityController:​ This class manages the settings for an individual activity,
whether during creation or editing.
Properties:
private String activityText
private Location activityLocation
private ActivityType activityType
Methods:
public activityTextChanged(String): Is executed whenever a new character has been
typed into the activity description section on the activity details form, processes the
newly entered string and calls ActivityReducer to store the text description in
application state.
public activityTextChanged(String): Is executed whenever a new character has been
typed into the activity description section on the activity details form, processes the
newly entered string and calls ActivityReducer to store the text description in
application state.
private fetchActivities(): Requests the user's stored activities from the online database.
private pushActivities(): Called whenever a new activity is created or deleted, updates
the activity snapshot stored in the database.

3.2 Server
3.2.1 Logic
● Class Auth:​ This class handles user authentication states and notifies other

components about user authentication by modifying states and using props.
Properties:
private String email
private String password
private User user
private String error
private boolean loading
Methods:
public state authReducer(action, state)

● Class UserManager:​ This class is composed of userReducer and user prop, which

handles modifications in user object (user profile).
Properties:
private User user
Methods:
public state authReducer(action, state)

● Class ActivityListManager: ​This class is composed of userReducer and props that
activityListReducer modify. This class help management of activities of user.
Properties:
private User user
private <List>Activity userActivities
Methods:
public state activityListReducer(action, state)

● Class ActivityManager: ​This class is composed of userReducer and activity prop,

which handles modifications in single activity.
Properties:
private Activity activity
Methods:
public state activityReducer(action, state)

● Class PathManager:​ This class is composed of pathReducer and path prop, which
manages path state.
Properties:
private Activity activity
Methods:
public state pathReducer(action, state)

3.2.2 Data
● Class Schedule: ​This class represents the schedule that it created for the user which a

list of activities.
Properties:
private ArrayList<Activity>
Methods:
Getter and setter methods
addActivity(Activity newactivity)

● Class DayofYear: ​This class represents a specific day of year. It holds the schedule
and the date of a specific day.
Properties:
private ArrayList<Activity>
private Date date
private Day day
private Schedule schedule
Methods:
Getter and setter methods

● Interface Activity: ​This is an interface for Errand_Activity and Recurring_activity
classes.
Properties:
private String name
private Time starttime
Methods:
Getter and setter methods

● Class Errand_Activity implements Activity: ​This class represents the errands that
user has to run in an irregular basis. It has duration attribute that helps the program to
manage the schedule timely.
Properties:
private int duration
Methods:
Getter and setter methods

● Class​ ​Recurring_Activity implements Activity:​ This class represents the recurring
activities of the user. More specifically, it represents the activities that a user do on a
regular basis. It has days attribute that refers to the days that the activity recurs.
Properties:
private ArrayList< Days>
private Time end_time
Methods:
Getter and setter methods

● Class Day: ​This class represents the days of a week.
Properties:
public enum Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday}

● Class​ ​Preferences: ​This class represents the preferences of a user such as the
locations that s/he prefer to go.
Properties:
private String name
private ErrandType type
Methods:
Getter and setter methods

● Class​ ​TransportationType: ​This class represents the possible transportation methods
for an activity such as private car, walking and public transportation.
Properties:

public enum TransportationType { privateCar, walking,public_transportation,
cycling}
Methods:
None

● Class Address: ​This class represents the address information of an activity. The
attributes corresponds to components of formal addresses in Turkey.
Properties:
private String Province
private String District
private String Neighborhood
private String Street
private int Building_id
Methods:
Getter and setter methods

● Class PersonalAddress inherits Address: ​This class inherits Address class and
represents the personal addresses of the user namely, home and work addresses.
Properties:
private String identifier
Methods:
Getter and setter methods

● Class User: ​This class represents a user of the application. A user object has
identifying information such as name, e-mail address etc.

Properties:
private int user_id
private String Email
private String Password
private String irstName
private String lastName
private PersonalAddress HomeAddress
private PersonalAddress WorkAddress
private ArrayList<Preferences> PreferenceList
Methods:
Getter and setter methods

4. References
[1]"Traveling Salesman Problem", Math.uwaterloo.ca, 2017. [Online]. Available:
http://www.math.uwaterloo.ca/tsp/. [Accessed: 15- Oct- 2017].

