
Bilkent University

Senior Design Project
Consigliere

Project High-Level Design Report

Selin Erdem, İrem Yüksel, Orhun Çağlayan, Furkan Küçükbay, Umut
Mücahit Köksaldı

Supervisor: Assoc. Prof. Dr. Mehmet Koyutürk
Jury Members: Prof. Dr. Uğur Güdükbay

Prof. Dr. Cevdet Aykanat

Project Analysis Report
Dec 22, 2017

This report is submitted to the Department of Computer Engineering of Bilkent
University in partial fulfillment of the requirements of the Senior Design Project
course CS491/2.

Department of Computer Engineering

 2

Contents
1.	 Introduction .. 3	

1.1	 Purpose of the System .. 4	
1.2	 Design Goals ... 4	

1.2.1 Usability ... 4
1.2.2 Supportability ... 4
1.2.3 Reliability ... 4
1.2.4 Efficiency ... 5
1.2.5 Security .. 5
1.2.6 Scalability .. 5
1.2.7 Portability ... 5

1.3	 Definitions, acronyms, and abbreviations .. 5	
1.4	 Overview ... 6	

2.	 Current Software Architecture ... 6	
3.	 Proposed Software Architecture .. 7	

3.1	 Overview ... 7	
3.2	 Subsytem Decomposition ... 7	
3.3	 Hardware/Software Mapping ... 10	
3.4	 Persistent data management ... 10	
3.5	 Access control and security ... 11	
3.6	 Global software control ... 11	
3.7	 Boundary conditions .. 12	

4.	 Subsystem Services ... 13	
5.	 References ... 19	

 3

1. Introduction

In the last few years, people’s daily lives have changed in many different ways. Simple things

became more complicated and we started to take more responsibilities and with more

responsibilities, came higher expectations. Consequently, concepts such as making plans,

using our time efficiently have gained more importance than ever before. Yet, it is a known

fact that nowadays people struggle when it comes to planning a day and running errands.

With the current technologies, it is possible to make a plan by entering the details such as time

and place, and having reminder alerts for these tasks, but these applications do not help the

user in terms of time efficiency and organization of their tasks.

Consigliere will be an iOS application that will work as a daily organizer and task manager.

With Consigliere, we aim to help people use their time more efficiently and regain the time

wasted on traffic. The user will simply need to enter whatever errands they have to run for

that day and the application will provide an optimal plan for the user to complete these

errands. This plan is designed by taking into account the roads the user will have to take to get

to the locations of their tasks, and the traffic situation in the road. In addition, the application

will estimate how much time the user will spend on an errand by analyzing the busyness of

the location and the nature of the user’s task. The application will also periodically check the

traffic status of relevant roads and the crowd level of the locations in order to update the daily

plan dynamically and send the user push notifications informing them of the opportunities to

run their errands in a timely manner.

In this report, the overview of the architecture and design components of our system is

provided. First the description, purpose and design goals of Consigliere are provided. Then,

the quality and properties of existing systems are described. Afterwards, the system models of

our system are included. The subsystem decomposition, architectural plans of subsystems,

and hardware/software mapping of these components are illustrated. Design decisions such as

persistent data management and boundary conditions are reported. Finally, the functions of

subsystem services and their interactions are outlined.

 4

1.1 Purpose of the System

The main purpose of Consigliere is to provide its users a practical and efficient scheduling

tool that they can run their errands and plan their days in an optimized manner. For these

purposes, Consigliere will offer number of features such as authorization, task managing,

optimization of daily plans, route planning according to several crucial constraints such as

traffic intensity. Furthermore, the application will optimize the way that users run their

daily errands in the interest of saving time using different factors such as traffic intensity,

road conditions and crowdedness. It will also offer several useful functionalities such as

reminders.

1.2 Design Goals

1.2.1 Usability

The usability is an important design goal for Consigliere as the target users will use the

app on a daily basis and it aims to make the users’ lives easier. User-friendliness is a

crucial factor for the app as the interactions to the system should be as simple as possible

and user should not have difficulty to use the system. For this purpose, user interface must

exhibit conceptual integrity and simplicity. Furthermore, novice users must be able to

install the application and operate its major use cases with little or no training.

1.2.2 Supportability

The system should be adaptable to the future updates in external APIs and platforms that

are used in application. Since the application depends on number of platforms such as

Google Maps it is important for the system to be flexible to the changes in those

platforms.

1.2.3 Reliability

Reliability is an important design goal for Consigliere as users will use it on a daily basis.

They will need up-to-date information such as traffic data to be able to get an optimized

and effective schedule. Hence, the traffic data used by the application must be up-to-date

and accurate. Furthermore, the suggested routes must be accurate and route suggestions

must consider temporary factors such as roads under maintenance and construction, or

 5

road closures. Our system also aims to avoid randomly scheduled daily plans and aims to

address the preferences of the users.

1.2.4 Efficiency

Consigliere should be efficient in terms of computation and response times. The system

should be able to complete the planning task under 10 seconds. The response time of the

system should be less then 100 milliseconds.

1.2.5 Security

The application should ensure security of user’s data & privacy. To address this goal, the

application will be accessible only when user logs in to his or her account with his and her

password. Furthermore, data that we access from other apps such as Google Maps or

Google Calendar will be used only if the user gives permission. As users will share their

personal data such as their home address, the system should also ensure secure data

management and storage.

1.2.6 Scalability

The system should be scalable as the user can have arbitrary number of tasks per day.

Therefore, our design goal is to make our application to support up to 15 tasks/stops per

day.

1.2.7 Portability

The system should be able to be used in different software and hardware platforms.

1.3 Definitions, acronyms, and abbreviations

UI: User Interface

API: Application Programming Interface

Server: The part of the system which is responsible of logical operations, scheduling, and

data management

Client: The part of the system that the user interacts

 6

1.4 Overview

Consigliere is basically an application that enables users to plan and organize their errands

in a time-efficient manner by suggesting dynamic daily plans. The applications main

functionality will be mapping out a route that enables users to run their errands unerringly

and efficiently. Main goal of our application is to help the users to finish his daily tasks in

timely manner. It will also offer other several useful functionalities such as sending

reminder notifications and saving parking spot to find the car easily.

What makes Consigliere different from classic task managers or map applications such as

Google Maps or a regular daily planner is its incorporation of daily routine and task

planning. Although most map applications provide route planning by selecting multiple

points of interest, they fall short at optimizing the efficient route in terms of time and

distance. Similarly, daily planners generally work just like agendas and only notifies the

user about the upcoming events or tasks but they do not offer time management in terms of

route optimization.

Consigliere will offer number of features such as task scheduling, optimization of daily

plans, route planning according to several crucial constraints such as traffic intensity. Main

challenge of this application is finding an optimized, relevant route that includes location

of each errand that the user should run, which is basically an algorithmic and innovative

approach to the travelling salesman problem [1]. Another goal of Consigliere providing an

optimization for the way that users run their daily errands in the interest of saving time using

different factors such as traffic intensity, road conditions and crowdedness.

2. Current Software Architecture

Current systems can be examined under two main functionalities: map applications and daily

planner applications. Map applications generally gives user a time or distance optimized route

between two or more points which user enters to the application. The map applications

generally lack the optimization when it comes to calculate the route between more than two

points. For example, Google Maps calculates the route between three nodes with given order

(go to first point, then second point, then third point) even if going to the second point first

shortens the distance.

 7

Secondly, Daily planners lack the functionality of maps when it comes to planning the day.

Generally, daily planner applications work as simple agendas and do not optimize the time or

distance. Although there are several applications for calculating the route and planning the

day separately, there are no application for planning the day on the map in a time-efficient

manner.

3. Proposed Software Architecture

3.1 Overview

In this part, the subsystem decomposition of Consigliere is presented in detail.

ü In 3.2, the partitioning of the system is displayed using UML diagrams together with

the classes within tiers.

ü In 3.3, hardware/software mapping of Consigliere is elaborated to show the

allocation of the resources.

ü In 3.4, the persistent data management is demonstrated and the database system is

described.

ü In 3.5, the access boundaries of users are defined and security issue in Consigliere

is described.

ü In 3.6, a general flow of the system is mentioned.

ü In 3.7, the initialization, termination and failure conditions of Consigliere are

provided.

3.2 Subsystem Decomposition

Our system is built on top of a Client-Server architecture model. The mobile application

constitutes the client part of the system. The client requests services from the server to

function and to respond the needs of the users. The server of the system is assigned the tasks

of communicating with Google Maps API, making the necessary calculations to optimize

the routes that the user will follow, creating errands and retrieving the data. The main

reasoning behind selecting a Client-Server architecture model is to make our app battery-

friendly and to be able to respond as many clients as possible without any significant

performance penalty. Thus, scalability and high performance are given utmost importance.

In short, the client will be focusing on taking the requests of the user and on responding to

them while the server will be handling data retrieval and optimization tasks.

 8

The Client-Server architecture model is further divided into a 3-Tier sub-model. The system

has three layers: Presentation Tier in the Client side, Logic Tier and Data Tier in the Server

Side. The Presentation Tier is the exact same of the Client and is responsible from

interacting with the user. The Logic Tier in the Server side is the brain of the system as its

name suggests and all the functionality resides within here. The data that are retrieved in

the Data Tier are processed in Logic Tier. Finally, the Data Tier manages the database

control.

.

Figure 1. Subsystem Decompositon

 9

 Figure 2. Subsystem Decomposition Detailed View

 10

3.3 Hardware/Software Mapping

Figure 3. Component Diagram

The client application will reside in an iPhone. Consigliere will make use of phone screen

to interact with the user and phone’s location services to share with the server-side. Since

the application data will be residing in the Data Server, the memory requirements of the

application will be bearable. Internet connection will be necessary for the client machine to

retrieve persistent and real-time data from the server side. The requests to the Web Server

will be realized through HTTP.

3.4 Persistent data management

According to our plan, we have to store lots of data such as users, places, errands. Some of

the data we will store will change constantly, users might change their errands, their

locations and personal data all the time. As the data change over time, we might have to

rearrange the activity plan and update the route. Moreover, we might have to response each

changes very quickly. In that case, we cannot afford expensive database operations. Also,

one of our aims is to collect data and specialize routes that we offer. Therefore, we need to

use a database which is suitable for geographical data and more time efficient compared to

other database systems. Hence, we decided to use PostGIS, an extension of PostgreSQL.

 11

3.5 Access control and security

We will ask users to sign up and login to the program in order for them to use the

application. Users will be allowed to change their errands, personal details and personal

settings. However, they will not be allowed to change the overall map data.

For users to sign up, we will use an email/username/password sign up system. The user

information will only be shown to the user itself. These data will be secured by using 3rd

party security system. Users must login in order to access their user data, errands, and their

route plans.

Apart from user request, we will not distribute irrelevant user information to 3rd

parties. Also, application will not access or connect any other application without user’s

consent.

3.6 Global software control

We have an event driven system. The user logins to the system by using their username and

password. Then the system checks if the username/password combination exists in the

database. It the combination exists, the application gives the user permission to login to the

app.

In the application, user can modify their personal information, errands, and check their

route. When one of these are changed, app updates the user’s profile.

When user enters a set of daily errands, app calculates an optimal route and shows it to the

user. After each completed errand, user can label that event as ‘finished’ and app

recalculates the route accordingly. User can request to look at the details of errands. For

that request, app shows the details of requested errand.

User can request to see the details of points of interest on the map embedded into the

application. In that case, the requested point of interest is shown on the map with its

details. User can search for an address on the map. App then finds the searched address and

shows it on the map.

 12

3.7 Boundary conditions

3.7.1 Initialization

The user must have the application on their phone in order to use it. To use the application,

user must create an account and use that account to log in to the application. After login,

user can benefit from application. User cannot use the application if log in fails.

Additionally, application needs a regular internet connection in order to run, since it relies

on live map data.

3.7.2 Termination

User can terminate the application by logging off. If he or she decides not to log out,

application will keep the account information and keep the user logged in. Apart from

logging off, user can also terminate the session by clearing the application data. If the

application is not closed, it will run on the background.

3.7.3 Failure:

The application fails if there is no internet connection since live map data cannot be

obtained. If the application is closed during the calculation of the routes, the routes cannot

be saved.

 13

4. Subsystem Services

This part of the report analyzes the subsystems of our system and describes the services they

provide in detail.

4.1 Client Subsystem

The client corresponds to the mobile application of our system. The client is the

presentation layer of our system. The user creates an account or logins to the system via

the client. The client requests login access from the server. The client manages account of

the user, the settings, the past/present/future errands and tasks. The user specifies the

details for a new errand or a new task. The client is also responsible from presenting the

data it collects from the server to the user, manage the operations of the user and send

notifications when necessary.

Client subsystem includes Presentation Tier. Presentation Tier has View and Controller

subsystems. View subsystem is responsible from all the user interface operations.

Controller subsystem manages the interaction between the client and the server and it also

controls the operations within the client. It collects the data from the mobile application

and sends it to server. It also requests the required data such as daily plan from the server.

Furthermore, Controller subsystem handles client functions such as account management,

daily plan management, settings management.

 14

 Figure 4. Detailed View of Client Subsystem

4.1.1 View Subsystem

 Figure 5. View Subsystem in Client

 15

View subsystem handles all user interface related operations.

ScreenManager: Main manager class that arranges the tasks of other classes in the

subsystem.

Screen: Class that is responsible from the presentation of all components in the screen

of the user.

4.1.2 Controller Subsystem

 Figure 6. Controller Subsystem in client

Controller system manages the client operations and the interaction between the client

and the server.

ClientManager: Main manager class that arranges all operations of other managers.

LoginManager: Class that collects the entered username/email/password inputs and

manages the account login.

TaskManager: Class that collects the necessary information from the user about the

tasks, sends the data to server, and collects the appropriate daily plan.

SettingsManager: Class that updates settings according to the requests of the user and

notifies other components.

ServerConnector: Main class for handling interaction between the client and the

server.

 16

4.2 Server

4.2.1 Logic Tier

Figure 7. Logic Tier in Server

Logic Tier is responsible for the core operations that the application needs to do in order to

provide the user with the desired data. Initially, the Logic Tier collects the information about

the user’s task from the client. Then it determines the locations of these tasks and checks the

traffic info, as well as the crowd data of these locations. Finally, it constructs an ideal, tentative

plan for the user and sends it back to the client.

DataCollector: This class is responsible for collecting the task and account information from

the client and passing the information to the DataManager class. It will continuously check the

active list of tasks, and the user’s information about his/her schedule, and notify the server about

whatever changes might occur.

DataManager: The DataManager class is responsible for obtaining the user related data from

the DataCollector class, as well as managing the data stored in the Data Tier of the server. All

data related to the user’s tasks as well as user generated location data is managed and stored by

this class.

 17

AccountManager: The class that manages the account and authorization information of a user.

Past tasks, on-going activities of a user, permanent schedule info related to a person’s daily life

as well as their credentials such as user name, password and e-mail address are managed by this

class.

LocationDataManager: Interacts with the Google Maps API to collect information related to

the location of the user’s tasks such as traffic and crowd. It then passes the information to the

DataManager class to be combined with the user’s data.

ActivityPlanner: The core class that prepares the daily plan for the user according to the

location and task data provided by the DataManager class. This class interacts with the

ReschedulingSystem, RecommendationSystem and DataManager the create the most optimal

daily plan for the user.

ReschedulingSystem: The class responsible for adjusting the current errand plan for the user

should there be any changes related to crowd, traffic or user preference.

RecommendationSystem: This class is responsible for checking and prompting the user about

the opportunities to complete some or all of their tasks in a timely manner, provided that the

current conditions related to traffic and location are appropriate.

 18

4.2.2. Data Tier

 Figure 8. Data Tier in Server

The Data Tier of the server manages all data related to the application. The main component of

this tier is the Database Management Subsystem, which manages the database located in the

server which keeps track of the user’s data as well as the data collected online.

User: Data class that represents the users of Consigliere. It includes credentials and the

authorization information of the user such as e-mail, password, user name and account details.

Preferences: Includes information about the daily permanent schedule and the location

preferences for various tasks of the user.

ActivityPlan: Data class that holds the current daily plan of the user, utilizing the information

provided by the user in the form of task lists as well as the crowd and traffic information

collected from the internet.

Task: Data class that represents a single task that the user has input into Consigliere. Holds the

location information and the type of the task and the estimated duration of said task.

LocationData: Collects and holds information related to the transportation of the user from

one task location to another. Includes information about the traffic situation on the roads

between the tasks and the crowd levels of the task locations.

 19

5. References

[1] "Traveling Salesman Problem", Math.uwaterloo.ca, 2017. [Online]. Available:

http://www.math.uwaterloo.ca/tsp/. [Accessed: 15- Oct- 2017].

